If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+65n+14=0
a = 9; b = 65; c = +14;
Δ = b2-4ac
Δ = 652-4·9·14
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-61}{2*9}=\frac{-126}{18} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+61}{2*9}=\frac{-4}{18} =-2/9 $
| 5t-3=47 | | 0.04(2t-9)=0.08(t-5)+0.04 | | p/31-574=-554 | | 9n^+65n+14=0 | | x+13.4;x=7.89 | | 7x0.78=5.46 | | 9x+(-6)=5 | | 0.6x+1.1=0.8x-0.1 | | -22=23+3k | | 7n-28=7(n-4) | | -2k-3=22 | | 5/2x-1/1x=6 | | 4g+14=78 | | x+2x+2x=41 | | -4=-4/5h | | q/3+41=47 | | 30-6(3z+1)=3(2z-4) | | -35=-6g+31 | | 14/6y+1=2y-4 | | 9x+(-1)=-6 | | 8x-50=3x+125 | | q-25/7=10 | | -26=g/6+(-32) | | 3(2u-1)-7=5u-10 | | (2x+3)=-2(2x+3) | | n/8+4=10 | | 7x+8=4x4 | | -26=g/6 | | 1,06x=16960 | | 3(x-4)+9=5x-2(2+x) | | 5x=2x2 | | 1/3(3x+9)=x-4 |